Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.380
Filter
1.
PLoS One ; 19(5): e0291155, 2024.
Article in English | MEDLINE | ID: mdl-38722944

ABSTRACT

BACKGROUND: The Central African Republic (CAR) is one of the countries with the highest prevalence of viral hepatitis infection in the world. Coinfection with HIV increases the morbidity and mortality beyond that of mono-infection with either hepatitis or HIV. The present study describes the geographic distribution of viral hepatitis infections and molecular characterization of these viruses in the CAR. METHODOLOGY: Out of 12,599 persons enrolled during the fourth Multiple Indicator Cluster Survey of 2010 in the CAR, 10,621 Dried Blood Spot (DBS) samples were obtained and stored at -20°C. Of these DBS, 4,317 samples were randomly selected to represent all regions of the CAR. Serological tests for hepatitis B, D, and C viruses were performed using the ELISA technique. Molecular characterization was performed to identify strains. RESULTS: Of the 4,317 samples included, 53.2% were from men and 46.8% from women. The HBsAg prevalence among participants was 12.9% and that HBc-Ab was 19.7%. The overall prevalence of HCV was 0.6%. Co-infection of HIV/HBV was 1.1% and that of HBV/HDV was 16.6%. A total of 77 HBV, 6 HIV, and 6 HDV strains were successfully sequenced, with 72 HBV (93.5%) strains belonging to genotype E and 5 (6.5%) strains belonging to genotype D. The 6 HDV strains all belonged to clade 1, while 4 recombinants subtype were identified among the 6 strains of HIV. CONCLUSION: Our study found a high prevalence of HBV, HBV/HDV and HBV/HIV co-infection, but a low prevalence of HCV. CAR remains an area of high HBV endemicity. This study's data and analyses would be useful for establishing an integrated viral hepatitis and HIV surveillance program in the CAR.


Subject(s)
Coinfection , HIV Infections , Humans , HIV Infections/epidemiology , HIV Infections/virology , HIV Infections/complications , Female , Male , Coinfection/epidemiology , Coinfection/virology , Adult , Seroepidemiologic Studies , Central African Republic/epidemiology , Middle Aged , Adolescent , Young Adult , Hepatitis, Viral, Human/epidemiology , Hepatitis, Viral, Human/virology , Hepatitis B/epidemiology , Hepatitis B/virology , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Child , Hepatitis C/epidemiology , Hepatitis C/virology , Phylogeny , Child, Preschool , Prevalence
2.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 375-379, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38733195

ABSTRACT

Hepatitis B virus (HBV) DNA integration occurs during the reverse transcription process of HBV replication, which develops in the early stages of HBV infection and accompanies the entire disease course. The integration of HBV DNA is detrimental to the attainment of clinical cure goals and also raises the risk of developing liver cancer. Theoretically, nucleos(t)ide analogs can reduce the synthesis of new double-stranded linear DNA, but there is no clearance function for hepatocytes that have already integrated HBV. Therefore, patients with serum HBV DNA-negative conversions still have the risk of developing liver cancer. As an immunomodulatory drug, interferon can not only inhibit viral replication but also inhibit or even eliminate existing clonally amplified hepatocytes carrying integrated HBV DNA fragments. However, there are currently few studies on the effects of nucleos(t)ide analogues and interferon therapy on HBV DNA integration. Thus, large-scale clinical studies are urgently needed for further clarification.


Subject(s)
Antiviral Agents , DNA, Viral , Hepatitis B virus , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Virus Integration , Hepatitis B/drug therapy , Hepatitis B/virology , Virus Replication/drug effects , Interferons/therapeutic use
3.
J Immunol Res ; 2024: 4722047, 2024.
Article in English | MEDLINE | ID: mdl-38745751

ABSTRACT

Hepatitis B virus (HBV) infection is a major global health issue and ranks among the top causes of liver cirrhosis and hepatocellular carcinoma. Although current antiviral medications, including nucleot(s)ide analogs and interferons, could inhibit the replication of HBV and alleviate the disease, HBV cannot be fully eradicated. The development of cellular and animal models for HBV infection plays an important role in exploring effective anti-HBV medicine. During the past decades, advancements in several cell culture systems, such as HepG2.2.15, HepAD38, HepaRG, hepatocyte-like cells, and primary human hepatocytes, have propelled the research in inhibiting HBV replication and expression and thus enriched our comprehension of the viral life cycle and enhancing antiviral drug evaluation efficacy. Mouse models, in particular, have emerged as the most extensively studied HBV animal models. Additionally, the present landscape of HBV therapeutics research now encompasses a comprehensive assessment of the virus's life cycle, targeting numerous facets and employing a variety of immunomodulatory approaches, including entry inhibitors, strategies aimed at cccDNA, RNA interference technologies, toll-like receptor agonists, and, notably, traditional Chinese medicine (TCM). This review describes the attributes and limitations of existing HBV model systems and surveys novel advancements in HBV treatment modalities, which will offer deeper insights toward discovering potentially efficacious pharmaceutical interventions.


Subject(s)
Antiviral Agents , Disease Models, Animal , Hepatitis B virus , Hepatitis B , Virus Replication , Humans , Animals , Hepatitis B virus/physiology , Hepatitis B virus/drug effects , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Hepatitis B/drug therapy , Hepatitis B/virology , Hepatitis B/immunology , Virus Replication/drug effects , Mice , Hepatocytes/virology
4.
J Med Virol ; 96(5): e29659, 2024 May.
Article in English | MEDLINE | ID: mdl-38747016

ABSTRACT

Hepatitis B virus (HBV) infection is a major global health burden with 820 000 deaths per year. In our previous study, we found that the knockdown of autophagy-related protein 5 (ATG5) significantly upregulated the interferon-stimulated genes (ISGs) expression to exert the anti-HCV effect. However, the regulation of ATG5 on HBV replication and its underlying mechanism remains unclear. In this study, we screened the altered expression of type I interferon (IFN-I) pathway genes using RT² Profiler™ PCR array following ATG5 knock-down and we found the bone marrow stromal cell antigen 2 (BST2) expression was significantly increased. We then verified the upregulation of BST2 by ATG5 knockdown using RT-qPCR and found that the knockdown of ATG5 activated the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. ATG5 knockdown or BST2 overexpression decreased Hepatitis B core Antigen (HBcAg) protein, HBV DNA levels in cells and supernatants of HepAD38 and HBV-infected NTCP-HepG2. Knockdown of BST2 abrogated the anti-HBV effect of ATG5 knockdown. Furthermore, we found that ATG5 interacted with BST2, and further formed a ternary complex together with HBV-X (HBx). In conclusion, our finding indicates that ATG5 promotes HBV replication through decreasing BST2 expression and interacting with it directly to antagonize its antiviral function.


Subject(s)
Antigens, CD , Autophagy-Related Protein 5 , GPI-Linked Proteins , Hepatitis B virus , Virus Replication , Humans , Hepatitis B virus/physiology , Hepatitis B virus/genetics , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism , Hep G2 Cells , Signal Transduction , Gene Knockdown Techniques , Host-Pathogen Interactions , Hepatitis B/virology , Hepatitis B/genetics
5.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747904

ABSTRACT

BACKGROUND: Hepatitis B caused by hepatitis B virus (HBV) infection is a serious global public health issue. Currently, serological indicators serve as important markers for the diagnosis of hepatitis B. It has been found that HBV core-related antigen (HBcrAg) correlates well with intrahepatic cccDNA, intrahepatic HBV DNA, serum HBV DNA, and hepatitis B e antigen (HBeAg). To provide a more reliable basis for the diagnosis and treatment of hepatitis B, we explored the correlation between HBcrAg and conventional serologic testing indicators and disease staging. METHODS: Five hundred forty-two patient serum samples were collected at the First Affiliated Hospital of Soochow University from November 2021 to March 2022. The serum HBcrAg was measured by the magnetic particle chemiluminescence method in addition with other serum indicators. RESULTS: HBcrAg statistically correlated with HBV DNA level (r = 0.655, p < 0.001) and HBeAg level (r = 0.945, p < 0.001. The mean HBcrAg levels in the immune-tolerant and immune-clearance phases were significantly higher than those in the immunologic-control phase and the reactivation phase. This study demonstrated that serum HBcrAg positively correlated with serum HBV DNA and HBeAg. Even in cases where HBV DNA and HBeAg are negative, there is still a higher positivity rate of HBcrAg in hepatitis B patients. CONCLUSIONS: HBcrAg is a reliable serum marker to avoid underdiagnosis of occult HBV infection.


Subject(s)
Biomarkers , DNA, Viral , Hepatitis B Core Antigens , Hepatitis B e Antigens , Hepatitis B virus , Hepatitis B , Humans , Hepatitis B Core Antigens/blood , Hepatitis B Core Antigens/immunology , Male , Female , Hepatitis B/diagnosis , Hepatitis B/immunology , Hepatitis B/blood , Hepatitis B/virology , Hepatitis B e Antigens/blood , Hepatitis B e Antigens/immunology , Hepatitis B virus/immunology , Hepatitis B virus/genetics , Adult , Biomarkers/blood , Middle Aged , DNA, Viral/blood , Young Adult , Aged , Adolescent
6.
Front Immunol ; 15: 1340619, 2024.
Article in English | MEDLINE | ID: mdl-38711498

ABSTRACT

To design new CARs targeting hepatitis B virus (HBV), we isolated human monoclonal antibodies recognizing the HBV envelope proteins from single B cells of a patient with a resolved infection. HBV-specific memory B cells were isolated by incubating peripheral blood mononuclear cells with biotinylated hepatitis B surface antigen (HBsAg), followed by single-cell flow cytometry-based sorting of live, CD19+ IgG+ HBsAg+ cells. Amplification and sequencing of immunoglobulin genes from single memory B cells identified variable heavy and light chain sequences. Corresponding immunoglobulin chains were cloned into IgG1 expression vectors and expressed in mammalian cells. Two antibodies named 4D06 and 4D08 were found to be highly specific for HBsAg, recognized a conformational and a linear epitope, respectively, and showed broad reactivity and neutralization capacity against all major HBV genotypes. 4D06 and 4D08 variable chain fragments were cloned into a 2nd generation CAR format with CD28 and CD3zeta intracellular signaling domains. The new CAR constructs displayed a high functional avidity when expressed on primary human T cells. CAR-grafted T cells proved to be polyfunctional regarding cytokine secretion and killed HBV-positive target cells. Interestingly, background activation of the 4D08-CAR recognizing a linear instead of a conformational epitope was consistently low. In a preclinical model of chronic HBV infection, murine T cells grafted with the 4D06 and the 4D08 CAR showed on target activity indicated by a transient increase in serum transaminases, and a lower number of HBV-positive hepatocytes in the mice treated. This study demonstrates an efficient and fast approach to identifying pathogen-specific monoclonal human antibodies from small donor cell numbers for the subsequent generation of new CARs.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B virus , Humans , Hepatitis B virus/immunology , Hepatitis B virus/genetics , Animals , Mice , Hepatitis B Surface Antigens/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Antibodies, Monoclonal/immunology , Immunotherapy, Adoptive , Hepatitis B/immunology , Hepatitis B/virology , Broadly Neutralizing Antibodies/immunology , B-Lymphocytes/immunology , T-Lymphocytes/immunology
7.
BMC Bioinformatics ; 25(1): 177, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704528

ABSTRACT

BACKGROUND: Hepatitis B virus (HBV) integrates into human chromosomes and can lead to genomic instability and hepatocarcinogenesis. Current tools for HBV integration site detection lack accuracy and stability. RESULTS: This study proposes a deep learning-based method, named ViroISDC, for detecting integration sites. ViroISDC generates corresponding grammar rules and encodes the characteristics of the language data to predict integration sites accurately. Compared with Lumpy, Pindel, Seeksv, and SurVirus, ViroISDC exhibits better overall performance and is less sensitive to sequencing depth and integration sequence length, displaying good reliability, stability, and generality. Further downstream analysis of integrated sites detected by ViroISDC reveals the integration patterns and features of HBV. It is observed that HBV integration exhibits specific chromosomal preferences and tends to integrate into cancerous tissue. Moreover, HBV integration frequency was higher in males than females, and high-frequency integration sites were more likely to be present on hepatocarcinogenesis- and anti-cancer-related genes, validating the reliability of the ViroISDC. CONCLUSIONS: ViroISDC pipeline exhibits superior precision, stability, and reliability across various datasets when compared to similar software. It is invaluable in exploring HBV infection in the human body, holding significant implications for the diagnosis, treatment, and prognosis assessment of HCC.


Subject(s)
Hepatitis B virus , Virus Integration , Hepatitis B virus/genetics , Humans , Virus Integration/genetics , Software , Deep Learning , Male , Female , Hepatitis B/genetics , Hepatitis B/virology , Liver Neoplasms/genetics , Liver Neoplasms/virology , Computational Biology/methods
8.
J Med Virol ; 96(5): e29661, 2024 May.
Article in English | MEDLINE | ID: mdl-38738567

ABSTRACT

While dysfunctional exhausted CD8+ T cells hamper viral control when children acquire hepatitis B virus (HBV) infection, it's crucial to recognize that CD8+ T cells have diverse phenotypes and functions. This study explored a subset of CD8+ T cells expressing C-C chemokine receptor type 5 (CCR5) in children with HBV infection. Thirty-six patients in the immune tolerant group, 33 patients in the immune active group, 55 patients in the combined response group, and 22 healthy control children were enrolled. The frequency, functional molecules, and effector functions of the CCR5+CD8+ T cell population in different groups were evaluated. The frequency of CCR5+CD8+ T cells correlated positively with the frequency of CCR5+CD4+ T cells and patient age, and it correlated negatively with alanine aminotransferase, aspartate transaminase, HBV DNA, hepatitis B surface antigen, and lactic dehydrogenase levels. CCR5+CD8+ T cells had higher levels of inhibitory and activated receptors and produced higher levels of IFN-γ, IL-2, and TNF-α than CCR5-CD8+ T cells. CCR5+CD8+ T cells were partially exhausted but possessed a stronger antiviral activity than CCR5-CD8+ T cells. The identification of this subset increases our understanding of CD8+ T cell functions and serves as a potential immunotherapeutic target for children with HBV infection.


Subject(s)
CD8-Positive T-Lymphocytes , Hepatitis B virus , Hepatitis B , Receptors, CCR5 , Humans , CD8-Positive T-Lymphocytes/immunology , Receptors, CCR5/immunology , Child , Male , Female , Hepatitis B/immunology , Hepatitis B/virology , Child, Preschool , Adolescent , Hepatitis B virus/immunology , Cytokines , CD4-Positive T-Lymphocytes/immunology
9.
Viruses ; 16(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675950

ABSTRACT

Hepatitis B virus (HBV) is the etiologic agent of chronic hepatitis B, which puts at least 300 million patients at risk of developing fibrosis, cirrhosis, and hepatocellular carcinoma. HBV is a partially double-stranded DNA virus of the Hepadnaviridae family. While HBV was discovered more than 50 years ago, many aspects of its replicative cycle remain incompletely understood. Central to HBV persistence is the formation of covalently closed circular DNA (cccDNA) from the incoming relaxed circular DNA (rcDNA) genome. cccDNA persists as a chromatinized minichromosome and is the major template for HBV gene transcription. Here, we review how cccDNA and the viral minichromosome are formed and how viral gene transcription is regulated and highlight open questions in this area of research.


Subject(s)
DNA, Circular , DNA, Viral , Hepatitis B virus , Virus Replication , Hepatitis B virus/genetics , Hepatitis B virus/physiology , DNA, Circular/genetics , Humans , DNA, Viral/genetics , Viral Transcription/genetics , Gene Expression Regulation, Viral , Transcription, Genetic , Genome, Viral , Hepatitis B, Chronic/virology , Hepatitis B/virology , DNA Replication
10.
World J Gastroenterol ; 30(14): 1958-1962, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38681123

ABSTRACT

According to the report from the Chinese Center for Disease Control and Prevention, the prevalence of human immunodeficiency virus (HIV) infection exceeded 1.2 million individuals by the year 2022, with an annual increase of about 80000 cases. The overall prevalence of hepatitis B surface antigen among individuals co-infected with HIV reached 13.7%, almost twice the rate of the general population in China. In addition to the well-documented susceptibility to opportunistic infections and new malignancies, HIV infected patients frequently experience liver-related organ damage, with the liver and kidneys being the most commonly affected. This often leads to the development of end-stage liver and kidney diseases. Therefore, organ transplantation has emerged as an important part of active treatment for HIV infected patients. However, the curative effect is not satisfactory. HIV infection has been considered a contraindication for organ transplantation. Until the emergence of highly active anti-retroviral therapy in 1996, the once intractable replication of retrovirus was effectively inhibited. With prolonged survival, the failure of important organs has become the main cause of death among HIV patients. Therefore, transplant centers worldwide have resumed exploration of organ transplantation for HIV-infected individuals and reached a positive conclusion. This study provides an overview of the current landscape of HIV-positive patients receiving liver transplantation (LT) in mainland China. To date, our transplant center has conducted LT for eight end-stage liver disease patients co-infected with HIV, and all but one, who died two months postoperatively due to sepsis and progressive multi-organ failure, have survived. Comparative analysis with hepatitis B virus-infected patients during the same period revealed no statistically significant differences in acute rejection reactions, cytomegalovirus infection, bacteremia, pulmonary infections, acute kidney injury, new-onset cancers, or vascular and biliary complications.


Subject(s)
End Stage Liver Disease , HIV Infections , Liver Transplantation , Humans , HIV Infections/epidemiology , HIV Infections/complications , HIV Infections/diagnosis , Liver Transplantation/adverse effects , Liver Transplantation/methods , China/epidemiology , End Stage Liver Disease/surgery , End Stage Liver Disease/mortality , End Stage Liver Disease/diagnosis , End Stage Liver Disease/virology , Treatment Outcome , Prevalence , Coinfection , Antiretroviral Therapy, Highly Active , Hepatitis B/epidemiology , Hepatitis B/virology , Hepatitis B/diagnosis , Hepatitis B/complications
11.
Emerg Microbes Infect ; 13(1): 2350167, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38687692

ABSTRACT

Hepatitis B virus (HBV) infection remains a major public health problem and, in associated co-infection with hepatitis delta virus (HDV), causes the most severe viral hepatitis and accelerated liver disease progression. As a defective satellite RNA virus, HDV can only propagate in the presence of HBV infection, which makes HBV DNA and HDV RNA the standard biomarkers for monitoring the virological response upon antiviral therapy, in co-infected patients. Although assays have been described to quantify these viral nucleic acids in circulation independently, a method for monitoring both viruses simultaneously is not available, thus hampering characterization of their complex dynamic interactions. Here, we describe the development of a dual fluorescence channel detection system for pan-genotypic, simultaneous quantification of HBV DNA and HDV RNA through a one-step quantitative PCR. The sensitivity for both HBV and HDV is about 10 copies per microliter without significant interference between these two detection targets. This assay provides reliable detection for HBV and HDV basic research in vitro and in human liver chimeric mice. Preclinical validation of this system on serum samples from patients on or off antiviral therapy also illustrates a promising application that is rapid and cost-effective in monitoring HBV and HDV viral loads simultaneously.


Subject(s)
Hepatitis B virus , Hepatitis B , Hepatitis D , Hepatitis Delta Virus , Viral Load , Hepatitis Delta Virus/genetics , Hepatitis Delta Virus/isolation & purification , Humans , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Animals , Hepatitis D/virology , Hepatitis D/diagnosis , Hepatitis B/virology , Hepatitis B/diagnosis , Mice , RNA, Viral/genetics , RNA, Viral/blood , Coinfection/virology , Coinfection/diagnosis , DNA, Viral/genetics , DNA, Viral/blood , Genotype , Sensitivity and Specificity
12.
World J Gastroenterol ; 30(13): 1911-1925, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38659485

ABSTRACT

BACKGROUND: Liuweiwuling Tablet (LWWL) is a Chinese patent medicine approved for the treatment of chronic inflammation caused by hepatitis B virus (HBV) infection. Previous studies have indicated an anti-HBV effect of LWWL, specifically in terms of antigen inhibition, but the underlying mechanism remains unclear. AIM: To investigate the potential mechanism of action of LWWL against HBV. METHODS: In vitro experiments utilized three HBV-replicating and three non-HBV-replicating cell lines. The in vivo experiment involved a hydrodynamic injection-mediated mouse model with HBV replication. Transcriptomics and metabolomics were used to investigate the underlying mechanisms of action of LWWL. RESULTS: In HepG2.1403F cells, LWWL (0.8 mg/mL) exhibited inhibitory effects on HBV DNA, hepatitis B surface antigen and pregenomic RNA (pgRNA) at rates of 51.36%, 24.74% and 50.74%, respectively. The inhibition rates of LWWL (0.8 mg/mL) on pgRNA/covalently closed circular DNA in HepG2.1403F, HepG2.2.15 and HepG2.A64 cells were 47.78%, 39.51% and 46.74%, respectively. Integration of transcriptomics and metabolomics showed that the anti-HBV effect of LWWL was primarily linked to pathways related to apoptosis (PI3K-AKT, CASP8-CASP3 and P53 pathways). Apoptosis flow analysis revealed that the apoptosis rate in the LWWL-treated group was significantly higher than in the control group (CG) among HBV-replicating cell lines, including HepG2.2.15 (2.92% ± 1.01% vs 6.68% ± 2.04%, P < 0.05), HepG2.A64 (4.89% ± 1.28% vs 8.52% ± 0.50%, P < 0.05) and HepG2.1403F (3.76% ± 1.40% vs 7.57% ± 1.35%, P < 0.05) (CG vs LWWL-treated group). However, there were no significant differences in apoptosis rates between the non-HBV-replicating HepG2 cells (5.04% ± 0.74% vs 5.51% ± 1.57%, P > 0.05), L02 cells (5.49% ± 0.80% vs 5.48% ± 1.01%, P > 0.05) and LX2 cells (6.29% ± 1.54% vs 6.29% ± 0.88%, P > 0.05). TUNEL staining revealed a significantly higher apoptosis rate in the LWWL-treated group than in the CG in the HBV-replicating mouse model, while no noticeable difference in apoptosis rates between the two groups was observed in the non-HBV-replicating mouse model. CONCLUSION: Preliminary results suggest that LWWL exerts a potent inhibitory effect on wild-type and drug-resistant HBV, potentially involving selective regulation of apoptosis. These findings offer novel insights into the anti-HBV activities of LWWL and present a novel mechanism for the development of anti-HBV medications.


Subject(s)
Antiviral Agents , Apoptosis , DNA, Viral , Drugs, Chinese Herbal , Hepatitis B virus , Tablets , Virus Replication , Apoptosis/drug effects , Animals , Humans , Hepatitis B virus/drug effects , Drugs, Chinese Herbal/pharmacology , Mice , Hep G2 Cells , Antiviral Agents/pharmacology , Virus Replication/drug effects , Disease Models, Animal , Hepatitis B Surface Antigens/metabolism , Male , Hepatitis B/drug therapy , Hepatitis B/virology , RNA, Viral/metabolism , Liver/drug effects , Liver/pathology , Liver/virology
13.
Hematol Oncol ; 42(3): e3268, 2024 May.
Article in English | MEDLINE | ID: mdl-38676394

ABSTRACT

Mantle cell lymphoma (MCL) is an uncommon and incurable B-cell lymphoma subtype that has an aggressive course. Hepatitis B virus (HBV) infection has been associated with an increased risk for B-cell lymphomas, and is characterized by distinct clinical and genetic features. Here, we showed that 9.5% of MCL Chinese patients were hepatitis B surface antigen positive (HBsAg+). Compared to HBsAg-negative (HBsAg-) patients, HBsAg+ MCL patients had a greater incidence of elevated lactate dehydrogenase (LDH), but no difference was observed in the other clinical characteristics, including sex, age, ECOG ps, Ann Arbor stage, MIPI, extranodal involvement and Ki-67. The HD-AraC (high-dose cytarabine) regimen was the main first-line induction regimen for younger HBsAg+ patients, and cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) were used for elderly patients. HBsAg seropositivity was associated with a significantly shorter PFS than HBsAg seronegativity when patients were treated with rituximab or CHOP-based regimens. Compared with CHOP, the HD-AraC regimen was associated with longer PFS in HBsAg+ patients. Treatment with a Bruton tyrosine kinase inhibitor (BTKi) alone can also cause HBV reactivation. Among the 74 patients who underwent targeted deep sequencing (TDS), the nonsynonymous mutation load of HBsAg+ MCL patients was greater than that of HBsAg- MCL patients. HDAC1, TRAF5, FGFR4, SMAD2, JAK3, SMC1A, ZAP70, BLM, CDK12, PLCG2, SMO, TP63, NF1, PTPR, EPHA2, RPTOR and FIP1L1 were significantly enriched in HBsAg+ MCL patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Hepatitis B virus , Hepatitis B , Lymphoma, Mantle-Cell , Mutation , Humans , Male , Female , Middle Aged , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Aged , Hepatitis B virus/genetics , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Hepatitis B/complications , Hepatitis B/drug therapy , Hepatitis B/virology , Hepatitis B/pathology , Aged, 80 and over , Hepatitis B Surface Antigens/blood , Vincristine/therapeutic use , Vincristine/administration & dosage , Cyclophosphamide/therapeutic use , Cyclophosphamide/administration & dosage , Doxorubicin/therapeutic use , Doxorubicin/administration & dosage , Treatment Outcome
14.
Viruses ; 16(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38675871

ABSTRACT

The post-transcriptional regulatory element (PRE) is present in all HBV mRNAs and plays a major role in their stability, nuclear export, and enhancement of viral gene expression. Understanding PRE's structure, function, and mode of action is essential to leverage its potential as a therapeutic target. A wide range of PRE-based reagents and tools have been developed and assessed in preclinical and clinical settings for therapeutic and biotechnology applications. This manuscript aims to provide a systematic review of the characteristics and mechanism of action of PRE, as well as elucidating its current applications in basic and clinical research. Finally, we discuss the promising opportunities that PRE may provide to antiviral development, viral biology, and potentially beyond.


Subject(s)
Hepatitis B virus , Hepatitis B , RNA, Viral , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Humans , Hepatitis B/virology , Hepatitis B/drug therapy , RNA, Viral/genetics , RNA, Viral/metabolism , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Gene Expression Regulation, Viral , RNA, Messenger/genetics , RNA Processing, Post-Transcriptional , Animals
15.
Viruses ; 16(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675933

ABSTRACT

(1) Background: We aimed to determine the prevalence of hepatitis B virus (HBV) resistance-associated mutations (RAMs) in people with HBV and human immunodeficiency virus (HBV/HIV) in Botswana. (2) Methods: We sequenced HBV deoxyribonucleic acid (DNA) from participants with HBV/HIV from the Botswana Combination Prevention Project study (2013-2018) using the Oxford Nanopore GridION platform. Consensus sequences were analyzed for genotypic and mutational profiles. (3) Results: Overall, 98 HBV sequences had evaluable reverse transcriptase region coverage. The median participant age was 43 years (IQR: 37, 49) and 66/98 (67.4%) were female. Most participants, i.e., 86/98 (87.8%) had suppressed HIV viral load (VL). HBV RAMs were identified in 61/98 (62.2%) participants. Most RAMs were in positions 204 (60.3%), 180 (50.5%), and 173 (33.3%), mostly associated with lamivudine resistance. The triple mutations rtM204V/L180M/V173L were the most predominant (17/61 [27.9%]). Most participants (96.7%) with RAMs were on antiretroviral therapy for a median duration of 7.5 years (IQR: 4.8, 10.5). Approximately 27.9% (17/61) of participants with RAMs had undetectable HBV VL, 50.8% (31/61) had VL < 2000 IU/mL, and 13/61 (21.3%) had VL ≥ 2000 IU/mL. (4) Conclusions: The high prevalence of lamivudine RAMs discourages the use of ART regimens with 3TC as the only HBV-active drug in people with HIV/HBV.


Subject(s)
Coinfection , Drug Resistance, Viral , HIV Infections , Hepatitis B virus , Hepatitis B , Lamivudine , Mutation , Humans , Hepatitis B virus/genetics , Hepatitis B virus/drug effects , HIV Infections/virology , HIV Infections/drug therapy , HIV Infections/epidemiology , Female , Drug Resistance, Viral/genetics , Male , Botswana/epidemiology , Lamivudine/therapeutic use , Lamivudine/pharmacology , Adult , Middle Aged , Prevalence , Coinfection/virology , Coinfection/epidemiology , Coinfection/drug therapy , Hepatitis B/virology , Hepatitis B/epidemiology , Hepatitis B/drug therapy , Rural Population , Viral Load , Genotype , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
16.
Sci Rep ; 14(1): 9262, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649402

ABSTRACT

Hepatitis B and C viruses (HBV and HCV) are significant causes of chronic liver diseases, with approximately 350 million infections globally. To accelerate the finding of effective treatment options, we introduce HBCVTr, a novel ligand-based drug design (LBDD) method for predicting the inhibitory activity of small molecules against HBV and HCV. HBCVTr employs a hybrid model consisting of double encoders of transformers and a deep neural network to learn the relationship between small molecules' simplified molecular-input line-entry system (SMILES) and their antiviral activity against HBV or HCV. The prediction accuracy of HBCVTr has surpassed baseline machine learning models and existing methods, with R-squared values of 0.641 and 0.721 for the HBV and HCV test sets, respectively. The trained models were successfully applied to virtual screening against 10 million compounds within 240 h, leading to the discovery of the top novel inhibitor candidates, including IJN04 for HBV and IJN12 and IJN19 for HCV. Molecular docking and dynamics simulations identified IJN04, IJN12, and IJN19 target proteins as the HBV core antigen, HCV NS5B RNA-dependent RNA polymerase, and HCV NS3/4A serine protease, respectively. Overall, HBCVTr offers a new and rapid drug discovery and development screening method targeting HBV and HCV.


Subject(s)
Antiviral Agents , Hepacivirus , Hepatitis B virus , Molecular Docking Simulation , Neural Networks, Computer , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Hepatitis B virus/drug effects , Hepacivirus/drug effects , Humans , Drug Design , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Hepatitis B/virology , Hepatitis B/drug therapy , Ligands , Molecular Dynamics Simulation , Hepatitis C/drug therapy , Hepatitis C/virology
17.
Microbiol Spectr ; 12(5): e0378823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38567974

ABSTRACT

The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE: The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.


Subject(s)
Arsenic Trioxide , Cell Nucleus , DNA, Circular , DNA, Viral , Hepatitis B virus , Hepatitis B , Sumoylation , Virus Replication , Arsenic Trioxide/pharmacology , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Humans , Virus Replication/drug effects , Hepatitis B/virology , Hepatitis B/drug therapy , Hepatitis B/metabolism , Sumoylation/drug effects , DNA, Circular/genetics , DNA, Circular/metabolism , Cell Nucleus/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Antiviral Agents/pharmacology , Viral Core Proteins/metabolism , Viral Core Proteins/genetics , Hep G2 Cells
18.
Virol J ; 21(1): 92, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654327

ABSTRACT

BACKGROUND: Occult HBV infection (OBI) is a special form of hepatitis B virus (HBV) infection that may cause Liver cirrhosis and hepatocellular carcinoma, causing significant harm to patients. Given the insidious nature of OBI, it is usually not easy to be detected. Most of the samples currently studied are concentrated on blood donors, however, patients in this special state have not been fully studied. This project aimed to study the effect of HBV S region mutations on HBsAg in patients with clinical OBI. METHODS: Collect 107 HBsAg-/HBV DNA + blood samples from Beijing Youan Hospital, Capital Medical University from August 2022 to April 2023. Next, the successfully extracted and amplified HBV DNA S regions were sequenced. Construct mutant plasmids to verify the cell function of the high-frequency mutation sites and explore the possible molecular mechanism. RESULTS: Sixty-eight HBsAg-negative samples were sequenced, revealing high-frequency amino acid substitution sites in the HBV S protein, including immune escape mutations (i.e., sY100C、sK122R、sI126T、sT131P、and sS114T) and TMD (Transmembrane domain) region substitutions (i.e., sT5A、sG10D、sF20S、and sS3N). We constructed a portion of the mutant plasmids and found that sT5A, sF20S, sG10D, sS3N, sI68T, and sI126T single point mutations or combined mutations may decrease HBsAg expression or change the antigenicity of HBsAg leading to detection failure. CONCLUSIONS: HBsAg-negative patients may show various mutations and amino acid replacement sites at high frequency in the HBV S-region, and these mutations may lead to undetectable Hepatitis B surface antigen (HBsAg), HBsAg antigenic changes or secretion inhibition.


Subject(s)
DNA, Viral , Hepatitis B Surface Antigens , Hepatitis B virus , Hepatitis B , Mutation , Humans , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Female , DNA, Viral/genetics , Male , Adult , Middle Aged , Hepatitis B/virology , Amino Acid Substitution , Genotype , Young Adult , Aged
19.
J Virol ; 98(4): e0153823, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38501924

ABSTRACT

Prior to nuclear export, the hepatitis B virus (HBV) pregenomic RNA may be spliced by the host cell spliceosome to form shorter RNA sequences known as splice variants. Due to deletions in the open reading frames, splice variants may encode novel fusion proteins. Although not essential for HBV replication, the role of splice variants and their novel fusion proteins largely remains unknown. Some splice variants and their encoded novel fusion proteins have been shown to impair or promote wild-type HBV replication in vitro, and although splice variants Sp3 and Sp9 are two of the most common splice variants identified to date, their in vitro replication phenotype and their impact on wild-type HBV replication are unclear. Here, we utilize greater than genome-length Sp3 and Sp9 constructs to investigate their replication phenotype in vitro, and their impact on wild-type HBV replication. We show that Sp3 and Sp9 were incapable of autonomous replication, which was rescued by providing the polymerase and core proteins in trans. Furthermore, we showed that Sp3 had no impact on wild-type HBV replication, whereas Sp9 strongly reduced wild-type HBV replication in co-transfection experiments. Knocking out Sp9 novel precore-surface and core-surface fusion protein partially restored replication, suggesting that these proteins contributed to suppression of wild-type HBV replication, providing further insights into factors regulating HBV replication in vitro. IMPORTANCE: The role of hepatitis B virus (HBV) splice variants in HBV replication and pathogenesis currently remains largely unknown. However, HBV splice variants have been associated with the development of hepatocellular carcinoma, suggesting a role in HBV pathogenesis. Several in vitro co-transfection studies have shown that different splice variants have varying impacts on wild-type HBV replication, perhaps contributing to viral persistence. Furthermore, all splice variants are predicted to produce novel fusion proteins. Sp1 hepatitis B splice protein contributes to liver disease progression and apoptosis; however, the function of other HBV splice variant novel fusion proteins remains largely unknown. We show that Sp9 markedly impairs HBV replication in a cell culture co-transfection model, mediated by expression of Sp9 novel fusion proteins. In contrast, Sp3 had no effect on wild-type HBV replication. Together, these studies provide further insights into viral factors contributing to regulation of HBV replication.


Subject(s)
Hepatitis B , Liver Neoplasms , Protein Isoforms , Viral Proteins , Virus Replication , Humans , DNA, Viral/genetics , Hepatitis B/virology , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Phenotype , Protein Isoforms/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Carcinoma, Hepatocellular/virology
20.
Diagn Microbiol Infect Dis ; 109(2): 116240, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547799

ABSTRACT

Occult HBV infection (OBI) remains a potential threat for blood safety. The prevalence of OBI was investigated in a blood donation center of Chinese PLA General Hospital to improve HBV blood safety. 229446 samples from blood donors were screened by two different enzyme-linked immunosorbent assay (ELISA) kits. 78 samples were HBV DNA positive among 212134 ELISA nonreactive donor samples. The prevalence of OBI was 0.04% (76/212134). Ten samples of OBI were permitted by the donors' content for further research, and all of these were below 200IU/mL, and six of these were below 20IU/mL(6/10,60%). Genotype B and genotype C was 20% (2/10) and 80% (8/10), respectively. 16 amino acid mutations were detected in the S region of OBI, included three mutations in MHR region of S. The prevalence of OBI is rare in this donation center. These mutations we found may contribute to the multifactorial occurrence of OBI.


Subject(s)
Blood Donors , DNA, Viral , Genotype , Hepatitis B virus , Hepatitis B , Humans , Blood Donors/statistics & numerical data , Hepatitis B/epidemiology , Hepatitis B/virology , Prevalence , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Beijing/epidemiology , Male , Adult , Female , DNA, Viral/genetics , DNA, Viral/blood , Middle Aged , Mutation , Young Adult , Enzyme-Linked Immunosorbent Assay , China/epidemiology , Adolescent
SELECTION OF CITATIONS
SEARCH DETAIL
...